作为一无名无私奉献的教育工作者,总不可避免地需要编写教学设计,教学设计是一个系统化规划教学系统的过程。优秀的教学设计都具备一些什么特点呢?掌知识为您带来了10篇《倒数的认识教案》,如果对您有一些参考与帮助,请分享给最好的朋友。
教学目标:
(资料图片)
1.使学生通过探究活动,认识倒数的意义,掌握找倒数的方法。
2.培养学生观察、归纳、推理和概括的能力。
教学过程
一、创设活动情景,引入概念
出示例1的一组算式,开展小组活动:算一算,找一找,这组算式有什么特点?
小组汇报交流。(通过计算,发现每组算式的乘积都是1。通过观察发现相乘的两个分数的分子和分母位置是颠倒的……)
师:同学们发现了每组算式两个分数的分子与分母正好颠倒了位置,所以我们把这样的两个分数叫做“倒数”。
让学生读一读:“倒数”。
出示倒数的意义:乘积是1的两个数互为倒数。
二、探究讨论,深入理解
让学生说说对倒数意义的理解。
提问:“互为”是什么意思?(倒数是指两个数之间的关系,这两个数相互依存,一个数不能叫倒数。)
判断下面的句子错在哪里?应该怎样叙述。
因为3/4×4/3=1,所以3/4是倒数,4/3也是倒数。
三、运用概念,探讨方法
出示例2,找一找哪两个数互为倒数?
汇报找的结果,并说说怎样找的?
1.看两个分数的乘积是不是1;
2.看两个分数的分子与分母是否分别颠倒了位置。
讨论一下这两种方法哪一种方法比较快?(第二种方法,可以直接观察得到。)
通过具体实例总结归纳找倒数的方法。
(1)找分数的倒数:交换分子与分母的位置。
例:
(2)找整数的倒数:先把整数看成分母是1的分数,再交换分子和分母的位置。
例:
四、出示特例,深入理解
看一看,例2中的哪些数据没有找到倒数?(1,0)
提问:1和0有没有倒数?如果有,是多少?
小组讨论、汇报。
1.关于1的倒数。
因为1×1=1,根据“乘积是1的两个数互为倒数”,所以1的倒数是1。
也可以这样推导:
1的倒数是1。
2.关于0的倒数。
因为0与任何数相乘都不等于1,所以0没有倒数。
也可以这样推导:
分母不能为0,所以0没有倒数。
五、巩固练习
1.完成“做一做”。先独立做,再全班交流。
2.练习六第3题。
用多媒体或投影逐题出示,学生判断,并说明理由。
3.同桌进行互说倒数活动(练习六第2题)。
六、总结
今天学习了什么?
什么叫倒数?怎样找出一个数的倒数?
学习内容:人教版义务教育教科书数学六年级上册P28—29
学习目标:
(1)理解倒数的意义及倒数的特点,掌握求倒数的方法,并能正确熟练的求出倒数。
(2)采用自主探究与合作交流的方法,进一步培养学生的自主学习能力,提高学生观察、比较、归纳、概括以及合作学习的能力。
(3)通过亲身参与探究活动,体验数学学习的乐趣,激发积极的学习情感,培养学生学会与人合作,愿与人交流的习惯。
学习重点:倒数的意义、特点和求倒数的方法。
学习难点:1和0的倒数的求法。
学习过程:
一、创设情境,激趣导学。
1.出示算式,找特征。
先计算,再观察,看看有什么规律。
×=1×=15×=1×12=1
问:“你发现了什么?”
2.引出倒数的定义。让学生看书。
3.揭题:今天我们就来学习“倒数的意义”(板书课题)。
二、独学质疑,合作探究。
1.初步理解
我们知道×=1,那么我们可以说:“因为×=1所以和互为倒数”
这句话还可以怎么说?的倒数是,的倒数是。
你能照样子,结合黑板上的例题,说说算式中两数之间的。关系吗?
2.判断,加深理解
(1)判断正误,并说明理由。
a.和7都是倒数。(关注到了倒数的概念中关键的词语“互为”)
b.+=1,所以和互为倒数。(关注了倒数概念中关键的词语“乘积是1。”)
c.××=1,所以、、互为倒数。(关注了倒数中的关键词“两个数”)
小结:对于概念的学习,应该充分关注概念中的关键词语。
(2)请任意写出三个数的倒数,要求,写完整:谁的倒数是谁?
三、点拨互动,应用提升。
1.出示例2,找一找哪两个数互为倒数?
2.学生汇报找的结果,并说说怎样找的?
(1)看两个数的乘积是不是1。
(2)看两个数的分子与分母是否交换了位置。
3.根据寻找出的结果,探究倒数的特点。
4.这两种方法,哪一种比较快?
5.设问:1和0有没有倒数?如果有,是多少?
(1)分组讨论。(2)学生汇报。
四、检测诊断,总结评价。
1.基本练习:完成教科书P28的做一做,然后集体订正。
2.加深练习:倒数一定比它本身要小吗?探究什么数的倒数比它本身要大,什么数的倒数比它本身要小。
一、创设情境、导入新课。
1.课件出示:吞---吴干---士杏---呆。
2.请同桌互相交流一下,找一找下面文字的构成有什么规律吗?
3.学生汇报。
4.同学们观察的非常仔细,这种现象在数学中也有,今天这堂课我们就来研究倒数的知识。(板书课题:倒数的认识)
二、出示学习目标
1.能够理解和掌握倒数的意义。
2.学习求一个数的倒数的方法,能正确地求出一个数的倒数。
三、探究新知识
1.课件出示例1的算式,开展小组活动:算一算,找一找,这组算式有什么特点?
2.小组汇报交流。(通过计算,发现每组两个数的乘积都是1,还发现了相乘的两个分数的分子和分母的位置是颠倒的)
3.同学们发现了每组算式两个分数的分子与分母正好颠倒了位置,也发现了每组两个数的乘积都是1,我们现在就可以得出倒数的定义了:乘积是1的两个数互为倒数。(板书)
4.提问“互为”是什么意思?(倒数是指两个数之间的关系,这两个数相互依存,一个数不能叫倒数。
5.强调“两个数”“乘积是1”
6.出示0.4×2.5=1,让学生说一说0.4和2.5可不可以说互为倒数。
7.随堂练习:判断:(1)得数是1的两个数叫做互为倒数。(2)因为10×1/10=1,所以10是倒数,1/10是倒数。(3)因为1/4+3/4=1,所以1/4是3/4的倒数。
8.出示例题2,找一找哪两个数互为倒数?再说一说你是怎么找的?
9.以小组为单位进行讨论交流。
10.分组汇报:
第一种方法:看两个分数的乘积是不是1。
第二种方法:看两个分数的分子与分母是否分别颠倒了位置。
哪一种方法比较快?
11.观察书中的找倒数的方法,强调:3/5的倒数是5/3,不能用等号相连。
我们刚才知道了真分数、假分数和整数找倒数的方法:还有一些数找倒数的方法我们没有归纳。请同学们想一想下面的数怎么找倒数?
1.真分数、假分数。
2.整数
3.小数
4.带分数(板书)
12.例2中还有哪些数没有找到倒数?
13.提问:1和0有没有倒数?如果有,是多少?(小组讨论、汇报。)
四、巩固练习
我们现在应用今天学习的知识解决一些问题。
五、课堂总结。
板书设计成知识树。
教学目标
1.学生通过观察算式的特点,引出倒数的意义,并能够真正的理解和掌握。
2.学习求一个数的倒数的方法,使学生能够正确地求出一个数的倒数。
3.培养学生的观察能力和概括能力。
教学重点和难点
1.正确理解倒数的意义及互为的含义。
2.正确地求出一个数的倒数。
教学过程设计
(一)激发兴趣,引出概念
1.投影。哪个同学和老师比赛?谁说得快?
师:你们想知道老师为什么说得这么快吗?这两个因数之间有什么联系吗?这节课老师就要把这中间的奥秘告诉你们,相信你们得知后比老师说得还快。这节课我们一起学习倒数的认识。(板书课题)
2.同学认真观察每个算式,你发现了什么?同桌互相说一说。指名说。
板书:乘积是1 两个数
3.你还能很快说出乘积是1的两个数吗?你为什么说得这么快,有什么窍门吗?
生:两个数分子、分母颠倒位置就可以了。
师:说得好,因此我们把乘积是1的两个数叫做互为倒数。(把板书补充完整)
4.举例说明,什么叫互为倒数?
师:3是倒数这句话对吗?为什么?
你们说得对,谁能说出几组倒数?
同桌互相说,每人说两组。(指名说)
问:怎样判断他们说得是否正确?
生:看这组数的乘积是否是1。如果乘积是1,这两个数是互为倒数;如果乘积不等于
教学内容:
教科书第50页例7及相应的练习
教学目标:
1.使学生理解倒数的意义,掌握求倒数的方法,能正确的求出一个数的倒数。
2.培养学生举例、观察、比较、抽象概括能力。
3.通过自主探究、相互合作获得成功的体验,提高学习数学的兴趣。
一、口算导入
分别出示一四组算式(加减乘除),指名报答案,找这一组算式的共同点(和是1,差是1,积是1,商是1 );
师:今天,我们就一起来研究乘积是1的这一类算式。同学们,你能自己写一些乘积是1的算式吗?老师给你30秒时间,看看哪位同学写得既对又多。
展示个别学生作品,大家写的算式都有一个共同点:(乘积是1)。(板书)
师:乘积是1的两个数到底存在什么样的关系呢?请大家把书翻到第50页,自学。
指名回答,(乘积是1的两个数互为倒数。)(板书)相机揭示课题(认识倒数)(板书)
二、教学新课
师:你认为在这一句话中有哪些词比较关键?师划出,逐一解读。先强调乘积及1.
(1)问:“互为”是什么意思?(互相)
一个人能说互相吗?互相肯定是发生在(两个人之间)。所以,“互为”二字充分说明了倒数应该是(两个数)之间的关系。
(2)(结合学生的算式:)比如()乘()等于1,所以()和()互为倒数,也可以说(A)是(B)的倒数或者(B)是(A)的倒数。
(3)观察互为倒数的两个数,看看它们的分子、分母有什么特点?指名回答。
(4)指名学生结合另外的算式说说谁是谁的倒数。问:我们能单独说()是倒数吗?对啊,倒数相互依存的,这种存在相互依存关系的数,我们在五年级时就学习过,大家还记得吗?(倍数、因数)
(5)选择一个算式,跟你的同桌说说谁是谁的倒数。
三、求一个数的倒数
1.刚才,你们在短时间内写出了很多乘积是1的算式,在设计这些乘法算式时有什么窍门吗?指名回答(先写一个分数,再把这个分数的分子和分母倒一下,就是另一个因数了。)
为什么要把分子分母倒一下呢?(倒了之后,分子和分母就可以互相约分,使得数是1)
讨论到这里,你知道怎样求一个数的倒数了吗?指名回答。大家同意吗?
好的,接下来,老师要来考考大家了,有信心吗?我报一个数,你们一起说出这个树的倒数,5/9的倒数是9/5,7/6,6/10,11/8,3/7
2.师: 同学们已经学会了求真分数、假分数的倒数,想一想,我们还学过哪些数?(整数、小数、带分数)那么,怎样求整数、小数、带分数的倒数呢?列出几个数:
自主探究
a 四人为一小组,选择一种情况研究
b 生交流汇报,师板书例子
c 引导概括求倒数的方法
3.同学们真棒,通过自己的探索,学会了求一个数的倒数。那么有没有同学知道1的倒数呢?为什么?(1可以看成1/1,所以倒数仍是1,或者1×1=1)(板书)
那0的倒数呢?为什么?指名回答(0乘任何数都得0,即0乘任何数都不可能等于1.)(板书)
4.归纳如何求一个数的倒数
求一个数的倒数(0除外),只要把它的分子、分母交换位置。
5.师:学了那么多,下面就让我们一起来练一练吧(书本50页,练一练)
展示,核对,强调互为倒数的两个数之间不能用“=”连接。
教学目的:
1.使学生感知倒数的意义,掌握求倒数的方法,学会对倒数的正确表述。
2.培养学生的观察能力、数学语言表达能力、发现规律的能力等。
教学重点:求一个数的倒数的方法。
教学难点:理解倒数的意义,掌握求一个数的倒数的方法。
教学准备:教学光盘
课前研究:自学课本P50:
(1)什么是倒数?倒数的概念中哪几个字比较重要?说一说你是怎么理解的。
(2)观察互为倒数的两个数,说说他们分子、分母的位置发生了什么变化?
(3)0有倒数吗?为什么?
教学过程:
一、作业错例分析。
二、学习分数的倒数:
1.出示例7
学生在自备本上完成,指名核对。
教师板书: ×=1× =1× =1
2.你能模仿着再举几个例子吗?
学生回答,教师板书。
3.观察板书,揭示倒数意义:乘积是1的两个数互为倒数。(板书)
和 互为倒数,也可以说的倒数是 ,的倒数是。
让学生模仿着说另外两个算式,谁和谁互为倒数?谁是谁的倒数?
4.你能分别找出和的倒数吗?
学生同桌讨论找法,指名交流。
5.观察上面互为倒数的两个数,学生讨论怎样求一个分数的倒数?
指名交流方法:求一个分数的倒数时,只要把它的分子、分母调换位置就可以了。
6.合作练习:同桌两位同学一位说出一个分数,请另一位同学说这个分数的倒数,并交换练习。
三、学习整数的倒数:
1.电脑出示:5的倒数是多少?1的倒数呢?
学生跟自己的同桌说一说,再指名交流。
方法一:求5的倒数时,可以先把5看作,所以它的倒数是;
方法二:想5×( )=1,再得出结果。
2.那1的倒数是多少?(1)
3.0有倒数吗?为什么?(没有一个数与零相乘的积是1,所以0没有倒数)
4.分数和整数(0除外)都有它的倒数,小数有没有倒数?你能发表自己的观点吗?
0.25 0.1 的倒数是多少?如何求的?
5.练一练 示范写 的倒数: 的倒数是 ,明确不能写成 =。
学生独立完成,集体核对。
四、巩固练习:
1.练习十第1题
学生独立完成后集体订正,说说思路及倒数的意义和求倒数的方法
2.练习十第2题
学生先独立找一找,再交流想法,注意说完整话。例:与4互为倒数。
3.练习十第3题
学生独立填空后集体订正。
4.练习十第4题
写出每组数的倒数。说说有什么发现?
第1组中都是真分数,倒数都是大于1的假分数。
第2组中都是大于1的假分数,倒数都是真分数。
第3组中都是一个分数的分数单位,倒数都是整数。
第4组中都是非0的自然数,倒数都是几分之一。
5.练习十第5题:
学生独立完成。说说怎样求正方体的表面积和体积。
6.练习十第6题
学生独立列式解答后,辨析。
两题中分数的不同意义:
第一题中的表示两个数量间的倍比关系,要用乘法计算。
第二题中的表示用去的吨数,求还剩多少吨,要用减法计算。
7.思考题
学生小组讨论,指名交流。
按钢管的长度分三种情况考虑:
(1)如果钢管的长度都是1米,那么两根钢管用去的一样多;
(2)如果钢管的长度小于1米,那么第一根用去的长度长一些;
(3)如果钢管的长度大于1米,那么第二根用去的长度长一些。
五、课堂总结:
今天我们学习了两个数之间的一种新的关系——倒数关系,谁再来说一说倒数是怎样定义的?怎样求一个数的倒数?1的倒数是多少?0有没有倒数?
教材分析:
教材首先让学生观察乘积是1的算式,引出倒数的意义;根据倒数的意义,求一个数的倒数是应该用1除以这个数,但学生尚未学习分数除法,因此,教材接着运用不完全归纳法让学生寻找求一个数的倒数的方法。
教学目标:
(1)知识目标:使学生理解倒数的意义,掌握求倒数的方法,并能正确熟练的求出倒数。
(2)能力目标:采用自学与小组讨论的方法进行教学,进一步培养学生的自主学习的能力,提高学生观察、比较、抽象、归纳以及合作学习的能力。
(3)情感目标:提高学生学习数学的兴趣,发展学生质疑的习惯。
教学重点:知道倒数的意义和会求一个数的倒数
教学难点:1、0的倒数的求法。
教具准备:课件
教学过程:
一、课前谈话:
师:今天老师很高兴和大家上课,所以上课前老师想和大家互相成为好朋友。
生:好!
师:那你想怎样表述我们的关系?
生: 我们双方面互为朋友,也可以说成“老师是你的朋友”,“你是老师的朋友”。 这样学生对马上接触到的“互为倒数”就比较容易理解了。
二、揭示倒数的意义
师:前面我们学习了分数乘法,请同学们计算几道题。 师:观察它们有什么共同的特点? 生:乘积都是1!??
师:对,今天我们要研究的就是乘积是1的两个数。你们还能写出乘积是1的两个数吗?
生:(齐)能!
师:那好,我们就进行一个小小的比赛。请大家准备好课堂练习本,我给大家一定的时间,请你写出乘积是1的任意两个数,看谁写得多,而且能写出不同的类型。
准备好了吗?开始??
师:时间到,停!谁愿意把你写的念出来,和大家共同分享?
(生读,师有选择的板书在黑板上。 )
师:这么短的时间内就能写出这么多乘积是1的两个数,不错。
师:如果给你们充足的时间,你们还能写多少个这样的乘法算式?
生:无数个
出示例7
师:那请你们来帮帮忙,找出乘积是1的两个数。
(学生个别回答)
师:你们找的这些与之前写的所有算式都有怎样的共同点?
生:乘积都是1。
师:你知道吗?揭示意义教师板书:乘积是1的两个数叫做互为倒数。生齐读。
师:黑板上所写的两个数的积都是1 ,所以他们互为倒数。比如3/8和8/3的乘积是1 ,我们就说3/8和8/3互为倒数。(师板书3/8和8/3互为倒数)
师:3/8和8/3互为倒数!我们还可以怎么说呢。
生:3/8的倒数是8/3;8/3的倒数是3/8。
师:为什么乘积是1的两个数不直接说是倒数,而要说“互为”倒数呢?“互为”是什么意思呢?你是怎样理解这两个字?
生1:“互为”是指两个数的关系。
生2:“互为”说明这两个数的关系是相互依存的。
师:同学们说得很好。倒数是表示两个数之间的关系,它们是相互依存的,所以必须说清一个数是另一个数的倒数,而不能孤立地说某一个数是倒数。以前我们学过这种两数间相互依存关系的知识吗?
师:2/5和5/2的积是1,我们就说??(生齐说)
师:7/10和10/7的乘积是1,这两个数的关系可以怎么说?请您告诉你的同桌。
(学生活动)
(小结:刚才我们就认识了倒数的意义,知道乘积是1的两个数互为倒数,而且倒数不能单独存在,是相互依存的。)
探索求一个倒数的方法
师:非常好!我们知道了倒数的意义,那么互为倒数的两个数有什么特点呢?我们一起来观察一下刚才的这些例子。
生1:互为倒数的两个数分子和分母调换了位置。
师:同意吗?
生:同意。
师:根据这一特点你能写出一个数的倒数吗?
生:能
师:试一试!
师在黑板上出示3/5 7/2 ,写出它们的倒数。
师:那5(0.1)的倒数是什么?它可是没有分子和分母呀? 还有1 又1/8呢?
生:把5看成是分母是1的分数,再把分子分母调换位置。
求小数的倒数的方法:小数 求带分数的倒数的方法:带分数
三、 分数倒数。 倒数。 假分数
师:那1 的倒数是几呢?(学生很快就说出来了,并说明了理由)
0的倒数呢?
师:为什么?
生1:因为0和任何数相乘都得0,不可能得1。
师:刚才一个同学提出分子是0的分数,实际上就等于0,0可以看成是0/2、0/3把这此分数的分子分母调换位置后。(生齐:分母就为0了,而分母不可以为0。) 师:我们求了这么多数的倒数,谁来总结一下求一个数的倒数的方法。
生1:求一个数的倒数,只要把分子分母调换位置。
生2:如果是求一个整数的倒数,可以把这个整数看成是分母是1的分数,然后再调换分子分母的位置。
生3:1 的倒数是1,0没有倒数。
(生齐读求一个数倒数的方法。 )
四、巩固练习
1.打开书,阅读课本P34,把你认为重要的划起来。
2.完成练一练。
(1)学生在书上完成,教师巡视,请同学板演。注意学生的书写格式是否正确。
(2)发现一学生书写有误,与该生交流。
(3)用展台展示该生的错误。
师:这样写可以吗?(4/11=11/4)
生:不可以!
师:为什么?
生1:比如4/11的倒数是11/4,4/11是真分数,11/4另一个是假分数,它们是不可能相等的。
(4)师:对,互为倒数的两个数是不会相等的(1除外)。我们在书写时要写清谁是谁的倒数,或谁的倒数是谁,如老师黑板上写的一样。
3.小游戏:同桌互相出一题,对方说出答案。
4.先说说下面每组数的倒数,再看看你能发现什么?
(1)3/4的倒数是( ) (2)9/7的倒数是( )
2/5的倒数是( )10/3的倒数是( )
4/7的倒数是( ) 6/5的倒数是( )
(3)1/3的倒数是( ) (4)3的倒数是( )
1/10的倒数是( )9的倒数是( )
1/13的倒数是( )14的倒数是( )
由学生说出各数的倒数。然后
师:请你仔细观察,看能从中发现什么,发现得越多越好。
师:小组间可以先互相说一说。
汇报:
生1:我从第一组中发现真分数的倒数都是假分数。
生2:我从第二组中发现假分数的倒数是真分数或者假分数。
生3:真分数的倒数都小于1,假分数的倒数大于1。 假分数的倒数也可能等于1。
生4:我发现分子是1的分数。
4.填空:
7×( )=15/2×( )=( )×3又2/3=0.17×( )=1
五、课堂小结
1.小结:今天我们学习了什么???
2.学了倒数有什么用呢?
大家课后可去思考一下。
板书设计
倒数的认识
乘积是1的两个数互为倒数 1的倒数是1。0没有倒数。
0.1的倒数10 5的倒数是5 1又1/8的倒数是8/9 。
(0.1=1/10) (5=5/1) (1又1/8=9/8)
求小数的倒数的方法: 求带分数的倒数的方法:带分数
分数假分数 倒数。 倒数。
教学内容倒数的认识
教学目标1.通过一些实例的探究,让学生理解和掌握倒数的意义。在合作探究中掌握求倒数的方法,会求一个数的倒数。
2.使学生经历倒数意义的概括过程,提高观察、比较、概括和归纳的能力以及灵活运用知识解决问题的能力。
3.通过学生亲身参与探究活动,体验数学学习的乐趣,激发他们积极的学习情感,养成合作探究问题的习惯。
教学重难点
教学重点:理解倒数的意义,学会求倒数的方法。
教学难点:发现倒数的一些特征。
教具准备课件
设计意图
教学过程
特色设计
通过观察,使学生发现一个分数的倒数就是把它的分子与分母的位置颠倒,进而使学生体会到“倒数”这一概念中“倒”的含义,很自然的得出求一个分数的倒数的方法。
一、猜字游戏引入新课
找找下面文字的构成规律
呆———杏 土———干吞———吴
按照上面的规律填数
——( ) ——( ) ——( )
能根据分之和分母的位置关系,给这三组数取个名吗?揭示课题:倒数
二、新知探究
(一)探究讨论,理解倒数的意义。
1.课件出示算式。
开展小组活动:算一算,找一找,这组算式有什么特点?
小组汇报交流。
我发现了每组算式两个分数的分子与分母正好颠倒了位置,所以我们把这样的两个分数叫做“倒数”。
2.出示倒数的意义:乘积是1的两个数互为倒数。
3.你是怎样理解互为倒数的呢? 能举例吗?
(二)深化理解。
1.乘积是1的两个数存在着怎样的倒数关系呢?
2.互为倒数的。两个数有什么特点?
3.想一想:1的倒数是多少?0有倒数吗?为什么?怎么理解?
因为1×1=1,根据“乘积是1的两个数互为倒数”,所 以1的倒数是1。
又因为0与任何数相乘都不等于1,所以0没有倒数。)
(三)运用概念。
1.讨论求一个数的倒数的方法。
出示例2:写出其中3/5 、7/2 两个分数的倒数。
学生试做讨论后,教师将过程 。
小结:求一个数(0除外)的倒数,只要把这个数的分子、分母调换位置。)
2.怎样求整数(除外)的倒数?请求示6的倒数是几?(出示课件)
三、巩固练习
(一)完成教材第28页的“做一做”
(二)完成教材第29页练习六的第1-5题。
四、课堂小结
今天我们学习了有关倒数的哪些新知识? 板书设计
这部分内容是在学习了分数乘法的基础上教学的,主要为后面学习分数除法做准备,因为一个数除以分数的计算方法,归结为乘这个数的倒数。
这部分内容安排了2个例题,教学倒数的意义和求倒数的方法。
1. 例1。
让学生了解倒数的意义,编排了几组乘积为1的乘法算式,通过学生观察、讨论等活动,找出它们的共同特点,导出倒数的定义。
教学建议
(1)要让学生充分观察和讨论,找出算式的共同特点。
(2)给出倒数的定义后,结合定义讨论倒数的特点,特别要理解“互为倒数”的含义,即倒数是表示两个数之间的关系,这两个数是相互依存的,倒数不能单独存在。也可以结合判断题,如“73是倒数”对不对?以加深学生认识。
(3)可以让学生根据对倒数意义的理解,说出几组倒数,看学生是否真正理解和掌握。
2. 例2。
这里是一个图片教学求倒数的方法。教材先安排找倒数的活动,从而初步体验找倒数的方法。接着总结求倒数的方法,分两种情况。求分数的倒数是交换分数的 分子、分母的位置;求整数的倒数是把整数看作分子是1的分数,再交换分子和分母的位置。最后提出1和0的倒数的问题,让学生思考讨论得到结论。
教学建议
(1)通过找倒数的活动,交流探讨方法。
(2)结合教材给出的数据,讨论归纳方法。如35怎样找到它的倒数?6怎样找到它的倒数?
(3)把互为倒数的数提出来,还剩下1和0。提出问题:它们有没有倒数?倒数是多少?组织学生讨论,说出理由。在讨论的基础上归纳:根据倒数的意义,因为1×1=1,所以1的倒数是1;因为0与任何数相乘都是0,所以0没有倒数。
(4)完成“做一做”,检查对倒数意义的理解和求倒数方法的掌握。
3. 关于练习六的一些习题的说明和教学建议。
第2题是一个活动,可以同桌互说,一个人说出一个数,另一个人说出它的倒数,再交换说。
第3题通过判断对错的活动,加深对倒数的认识。
第(1)题,依据倒数的意义进行判断,是对的。
第(2)题,两个数互为倒数,而不是三个数,所以不对。
第(3)题,0没有倒数,所以不对。
第(4)题,不一定。大于1的假分数的倒数一定比这个假分数小,而真分数的倒数比这个真分数大。
整理与复习
对本单元的学习内容进行整理与复习。分为两个部分,第一部分以知识整理的形式回顾本单元的主要学习内容,引导复习;第二部分安排练习。
具体内容的说明和教学建议
复习部分
第1题,复习分数乘法的计算方法,呈现分数乘整数、整数乘分数和分数乘分数三道题。可以先由学生独立完成,再说说每道题的计算方法,回忆总结分数乘法的计算方法。做错的找一找错在哪里,然后完成练习七的第1、2、3题。
第2题,运用乘法运算定律进行简便计算。可让学生先独立完成,再说说运用了什么运算定律。然后完成练习七的第4题。
第3题,解决问题。第(1)题,求一个数的几分之几是多少的问题。可让学生画线段图表示数量关系,列式解答,再说说解答的思路。第(2)题是稍复杂的 求一个数的几分之几是多少的。问题,也先要求学生画出线段图表示题意,再列式解答,并交流有什么不同的方法,是怎样想的。然后完成练习七的第5、6题。
第4题,先说说什么叫倒数,再找出各个数的倒数,并说说找的方法。然后完成练习七的第7题。
教学目标:
1.是学生通过探究活动,认识倒数的意义,掌握找倒数方法。
2.培养学生观察、归纳、推理和概括的能力。
教学过程
一、创设活动情景,引入概念。
出示例1的一组算式,开展小组活动:算一算,找一找,这组算式有什么特点?
小组汇报交流。(通过计算,发现每组算式的乘积都是1.通过观察发现相乘的两个分数的分子和分母的位置是颠倒的)
师:同学们发现了每组算式两个分数的分子与分母正好颠倒了位置,所以我们把这样的两个分数就做倒数。
让学生读一读:倒数。
出示倒数的意义:乘积是1的两个数互为倒数。
二、 探究讨论,深入理解。
让学生说说对到数意义的理解。
提问:互为是什么意思?(倒数是指两个数之间的关系,这两个数相互依存,一个数不能叫倒数。)
判断下面的句子错在哪里?应该怎样叙述?
因为3/44/3=1,所以四分之三是倒数,三分之四也是倒数。
三、运用概念,探讨方法。
出示例2,找一找那两个数互为倒数?
汇报找的结果,并说一说怎样找到的?
1,看两个分数的乘积是不是1;
2,看两个分数的分子与分母是否分别颠倒了位置。
讨论一下这两种方法哪一种方法比较快?(第二种方法,可以直接观察得到。)
通过具体实例总结归纳找倒数的方法。
分子、分母交换位置
例:3/55∕3 3∕5的倒数是5∕3
(2)找倒数的倒数:先把整数看成分母是1的分数,在交换分子和分母的位置。
分子、分母交换位置
例:6=1∕6 6的倒数是1∕6.
四、出示特例,深入理解
看一看。例2中的那些数据没有找到倒数?(1,0)
提问:1和0有没有倒数?如果有,是多少?
小组讨论、汇报。
1.关于1的倒数。
因为11=1,根据乘积是1的两个数互为倒数,所以1的倒数是1. 交换分子、分母的位置
也可以这样推导:1= 1∕1=1,1的倒数是1.
2.关于0的倒数。
因为0与任何数相乘都不等于1,所以0没有倒数。
交换分子、分母的位置
也可以这样推导:0=0∕11∕0,分母不能为0,所以0没有倒数。
五、巩固练习
1.完成做一做,先独立做,再全班交流。
2.练习六第3题。
用多媒体或投影逐题出示,学生判断,并说明理由。
3.同桌进行互说倒数活动(练习六第2题)。
六、总结
今天学习了什么?
什么叫倒数?怎样找到一个数的倒数?
它山之石可以攻玉,以上就是掌知识为大家整理的10篇《倒数的认识教案》,希望对您的写作有所帮助。
Copyright © 2015-2022 亚洲快报网版权所有 备案号:京ICP备2021034106号-51 联系邮箱:5 516 538 @qq.com